澳门网上百家乐游戏平台网站网址

瑞芯微AI平台三大更新,加速端侧AI技术落地

作者:iamrockchip | 日期:2019-12-25 12:03:49

  第42分钟,富力扳回一球:唐淼右路内切中分球,萨巴禁区内迅速起脚斜射,皮球击中远侧立柱内侧撞入网内,比分变为1-3。萨巴打入本赛季第13粒入球。

瑞芯微Rockchip正式发布旗下AI平台三大重要升级,助力端侧AI应用:开发工具支持GUI图形交互界面、原生支持MXNetPyTorch、支持Docker部署。

一、交互方式更加友好,RKNN-Toolkit新版本将支持图形界面

经过多个版本的不断迭代完善,RKNN-Toolkit已日益成熟。Rockchip即将推出的新版将加入图形交互界面(GUI),开发者通过鼠标点击即可完成模型的转换、量化、性能分析、内存耗费分析等任务,快速完成AI模型在端侧部署的评估和转换工作。

特别是对于混合量化等较为复杂的任务,相比于过去的命令行交互,通过图形界面可大幅提高效率并降低操作错误的概率。另外,新版RKNN-Toolkit的图形界面同样在Linux/MacOSX/Windows三个平台上均可运行。

二、模型转化更加简便,RKNN-Toolkit将对MXNetPyTorch提供原生支持

过去RKNN-Toolkit通过ONNX来完成MXNetPyTorch等模型的支持,开发者需要先将模型转换为ONNX格式,再进一步转换为RKNN模型,这一过程较为繁琐,并且提高了引入问题的概率使得最终转换失败。

MXNetPyTorch发展非常迅速,普及度快速提高,RKNN-Toolkit新版本将原生支持MXNetPyTorch模型的转换,在端侧AI平台的框架和模型支持覆盖度上继续保持领先。

三、模型推理性能更加稳定,瑞芯微AI平台支持通过Docker快速部署端侧AI应用

随着端侧设备数量的成倍增长,需要以更具可扩展性的方式部署端侧AI应用软件。Docker容器技术是业界广泛通行的解决这一挑战的有力工具。

RK1808平台系统将提供对Docker的支持,通过硬件抽象层,在容器中仍可调用NPU的强劲算力,经测试,容器中的AI模型推理性能几乎没有损失。

通过上述更新,开发者基于瑞芯微 AI平台的产品开发、部署、维护将更为迅捷。瑞芯微将继续与广大开发者共同努力,加速AI在各类场景的落地。

(文字转载自“iamrockchip”微信公众号,20191223日)